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ABSTRACT é%§7z%7

Some steady-state solutions are obtained for thermsl and for shear-

flow turbulence by expanding two-point nonlinear correlation equations in {
power series in the space variables. The correlation equations, which
are for inhomogeneous turbulence, are constructed from the Navier-Stokes
and energy equations. To make the problem determinate, the weak~
turbulence approximation is used. Steady-state solutions are possible
because of the presence of nonlinear production terms in the correlstion
equations. Because only the low-order terms are retained in the power
series used in the expansions, the solutions are accurate only for small
values of the space variables, and specific boundary conditions cannot be
applied. The forms of the solutions show that critical values of parame-
ters (similar to Rayleigh or Reynolds numbers) exist below which the tur-
bulent fluctuations are zero. The main conclusion of the study is that
the Navier-Stokes and energy equations (averaged for turbulent flow) can
yield solutions in which the energy fed into a turbulent field by bugy-
ancy or shear forces is equal to that dissipated by viscosity.
INTRODUCTION

Most of the analyses based on stafistical turbulence theory have

been made for a decaying turbulence that is initially generated by exter-

nal means, as by flow through a grid.l‘s Sustained turbulence, such as




that produced by shear or buoyancy forces, has generally been investiga-

ted by using a phenomenological approach, -7 or by using simplified equa-
tions in place of the equations for the real f]_u:m..8 Statistical methods
have also been used for sustained turbulence ,4’ 5:9 but the work is gener-
ally limited to one-point correlation equations that by themselves do not
lead to solutions, although they are of consliderable schematic value.

The work done to date offers little evidence that the Navier-Stokes
and energy equations elther are, or are not, capable of ylelding solu-
tions for steady-state turbulence. Studles of the effect of a uniform
velocity gra.dientlo and of a uniform temperature gradient and body
forcell on an initially isotropic turbulent field indicate that in those
cases, although energy can be fed into a turbulent field by shear or
buoyancy forces, the energy fed 1n 1s less than that dissipated, and the
turbulence decays with time. If it were not for the abundance of sus-
tained turbulent flows in nature, one might, on the basis of the availeble
solutions, be led to the conclusion that steady-state turbulence will not
occur.

The present study is an attempt to provide evidence that the Navier-
Stokes and energy equations in averaged form can yleld solutions for
steady-state turbulence. The work is based on generalized two-point cor-
relation equations that are constructed from the Navier-Stokes and energy
equations by methods similar to those used by von KArmdn and Howarth for
isotropic 1:,urbuJ_<-:nce.l To make the problem determinate, the weak turbu-
lence approximation (triple correlations neglected) is used. This approx-

imation was also used by von Kdrmén and Howarth for the case of low
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Reynolds number turbulence. Although the approximation might be con-
sidered somewhat restrictive, it appears to be the only reasonable basis
of asnalysis, unless three- or four-point correlation equations are con-
side:ced.3 Moreover, since we are studylng sustained turbulence, we are
more Interested in the production terms in the equations than in the
transfer terms. (In the case of shear-flow turbulence the velocity gra-
dient causes energy transfer between wave numbers even when triple cor-
relations are neglected.19)

Sustained tuwrbulence 1s essentially a nonlinear phenomenon. 12 The
nonlinear character of the two-point correlation equatione is made evi-
dent when the mean temperaturz;s or velocitlies axe eliminated by intro-
ducing one point correlation equations into the twowpoint correlation
equations. DPlane heat transfer and shear layers are considered. The
correlation equations are expanded in power series in the gpace varia-
bles to obtain algebriac expressions for the correlations. Because only
the low-order terms are retained in the series, the solutions are accu-
rate only for small values of the gpace variables.

The case of sustalned thermal turbulence will be considered in the
next sectlon, after which sustained shear-flow turbulence will be tsken
UpPs

SUSTAINED THERMAL TURBULERCE

The term thermal turbulence as used here designates turbulence that
1s sustained by buoyance forces arising from temperature gradiénts and a
body force. For steady-state turbulence, the energy fed into the turbulent

field by buoyancy forces just balances that dissipated by viscous action.




Correlation Equations
Two-point correlation equations for homogeneous turbulence with a
body force and & temperature gradient are constructed from the Navier-
Stokes and energy equations in reference 1l. Here only the modifications
necessary for inhomogeneous turbulence will be considered. From refer-

ence 11 the correlatlon between velocity components at two points is

given by
y —r Buiuku'- Buiu];ut 13 =— 1 3 =t azuiu'
O wgul + d + d =18 put -1 usp' +
3t 9 "9 %y ] - 2O et kv
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where the overbars indicate averaged velues. The subscripts can taske on
the values 1, 2, or 3, and a repeated subscript in a term indicates a
sumation. The quantity uy 1s an lnstantaneous velocity component, Xy
and x; ere space coordinates at the points P and P', t 4is the time,
p 1s the denslty, v 1s the kinemstic viscosity, p 1s the instantaneous
pressure, gy is a component of the body force, t 1is the fluctuating
part of the instantaneous temperature, and B 1is the thermsl expansion
coefficlent defined by B = - (l/p)(ap/a‘l‘)p. For inhomogeneous turbu-
lence 1t 1s convenlent to introduce the varisbles Ty = X - X, &and

(%) = 1/2 (% + x];) (see Fig. 1)« Then Eq. (1) becomes




=B ugus 1o (uguiug + uiuku:j) + - (uiu;]uf; - ujuxul)
ot TH T 2 3(xdm o ° dry 3
Cafife T Tl e X -
- {['B(xi)m T 3, puy ( rﬂ " 3, puy () - 50 P“J}
1 Bzuiuﬁ Bzuiu

o by s A - ey - pegi() ()

where the following transformations were used:
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Equation (2) reduces to the Kérmén-Howarth equ,ta.tionl if the turbulence is
homogeneous and body forces are absent.
In a similar way the following equations are obtained.

Pressure-veloclty correlations:

; o
11 B%uj B j Bz;__ _ 1 ) uuy
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d%ujuus d%uwu;  dfu,uu, dtu,  dru,
19W%Yy 18 Titky | %%y 1 J 3 (3)

2 a(XZ)maI‘k 2 8(xk)marz Brlark B B _2- a(xk)m B Brk ’

Temperature-veloclty correlations:
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Temperature-temperature correlations:
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Temperature-pressure correlations:
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where T 1s the mean temperature and o Iis the thermal diffusivity.
These equations reduce to Eqs. (7), (9), (15), and (19) of reference 11
if the turbulence is homogeneous. It is also of interest to compare
them with Eqs. (5), (7), and (8) of reference 10.

Assume now that the only nonzero component of 2 1is in the negative

vertical direction, and let

g =- 83 (7)
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Also, let the temperature gradient be in the vertical direction so that
it i1s given by BT/BXS. The turbulence can then be homogeneous in hori-

zontal planes, and vertical axes wlll be axes of symmetry. Let

2 2 _ g2

If the turbulence is weak enough for triple correlations to be neglected

and if we let 1 =j =3 in Egs. (2) to (6),
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In order to eliminate the mean temperature gradient from the pre-
ceding two-point correlation equations and to emphaslze their nonlinear
character, we obtain a one-point correlation equation by sbustituting
Eg. (5) into Eq. (11) of reference 1l and by averaging. This gives

A
—— = d'
ot  ox 0X 0%

(14)

In the remainder of the section we will be concerred only with the steady-
state case. Also, since the correlations change only in the Jc:5 di-

rection, Eq. (14) becomes

O [T -0 )0
BXS Tus aaxs

oT a
Tus < BX3 k qS ( )
where a3 is the heat trangfer per unit area and is independent of posi-
tion. The quantity k 1s the thermal conductivity. The temperature

gradient at polnt P is then given by

q T
_of 33 _ 73 (16)
BXS k a
and that at point P' 1s given by
4 1
_or _93 _Tus 17
—a;; k a (17)

Substitution of Egs. (16) and (17) into the two-point correlation

Egs. (9), (10), and (11) gives, for the steady-state case,



— 0 T, - 0 —~
Pus(-_f) + 5;—3' 19113(-1‘) - ‘g;s- Puyg

d%uzua d%uzux  dZuxus duzuz —_——

a(xs)i Brg ‘352 £ of
-y
oo (B T\ Ll 3 T, D sl (g S
T 83\ k T T pjz 4 2
a 3(xz)y, or B(XS)m
3%rug diruy  dfruy | drug| —

+ + (a+ + + = + ' 19)
(v - a) 3Ga) s (a+ v) - NCRANY BeTT (
—, [% T\ —faz t'ug

0 = Tug(-r) 3 T s\ -T2
— T - —
. %‘Brrzi_zargi_zarg +_§8§1: (20)
dxg). 3% o€ = o

Egs. (18, (19), and (20) together with Egs. (12) and (13) form a deter-

minate set. (Note that Tuz and T'uz are special cases of Tuz.)
Inspection of the equations shows that one possible solution is given
when the correlations are all zero. In that case no turbulence will

4]

occur and the heat transfer will be entirely by conduction. We would

expect that if the fluid is heated from below (positive qs) there will,
in addition, by a nonzero solution, inasmuch as experiment indicates

‘ that turbulence can be set up for that case. Also, the presence of the

nonlinear terms uszuz Tuz, Tuz(-T) Tuz, and Tuz T'uy 1in Egs. (19)
and (20) leads us to suspect that nonzero solutions exist. If those

terms were not present, the no-turbulence solution would in general, be
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the only pertinent solution; the equationé in that case would be linear
and homogeneous. In the next section the possibility of turbulent solu-
tions of the steady-state correlation equations will be investigated by
expanding them in power series. Before doing that, however, it is con-
venient to convert them to dimensionless form by introducing the follow-

ing dimensionless variables:

* o * — * . * T
T = Auzug o = B7\4g’cu3 = 26 2T —pu' _ )\51-)113
343 —“;2“_’ 3 —"—;3—‘: E——:ﬁ}———: 3 —;;3—;
- E?\sgﬂ ' * (xz) m _x _ %B')\llg v
P = p4 ’(XS)m= o) ,ri=—7—‘—,Nt= kv :PI"—';y
v

where A 1is a typical microscale of the turbulence. The microscale is
used as a length because it 1s defined in terms of the shape of the cor-
relation curve for small values of the space variasbles, and the solutions
to be obtained are accurate only for small values of those variables.

The quantity N 1is a determining parameter for the thermal turbulence
and is somewhat similar to & Rayleigh number. Egs. (18) to {20) and

Egs. (12) and (13) become, in dimensionless form,

*
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Series Expansions
The plan now is to expand each correlation in Egs. (21) to (

a power series in §*, to substitute the serles into the partial

(24)

(25)

25) in

differen-

tial equations, and to equate the coefficient of each power of &¥ +to

zero. This glves a set of partial differential equations that does not

contain g*. Each dependent veariable in those equations is then
panded in a series 1n f; to obtailn ordinary differential equati
do not contain rg. Finally, expansion in (XS);. eliminates that
ble, and we end up with a set of algebralc equations that can be

simultaneously to obtain values for the correlations.

ex-

ons that

varia-

solved
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In the present analysis we will consider only equations obtained by
§*O #0 %l

setting the coeffilcients of > T3 5 Tz (xs)zé, and (xs);; equal to
zero. Thus the solution obtained will be accurate only for small values
of those variables and will approach an exact solution only as g*, r;,‘
and (xs)z gpproach zero. We will not be able to accurately apply
boundary conditions that state, for instance, that a correlation 1s zero
at given points in £*, rg, (xs); space (e.g., at walls or at . w),
since, in general, g*, ete. will not be small at the points the boundary
conditions are applied. 1In lieu of boundary conditions we will introduce
microscales that depend only on the shapes of the correlation curves near
their origins. As defined by Taylor, a microscale is the distance at
which the inscribed parabola at the origin of a correlation curve goes to
zero.2:% For the law Reynolds numbers considered here (final period for
decaying turbulence), the mlcroscale of the turbulence differs but
slightly from the macroscale.3 The mlcroscales used here are, in some
cases, slight generalizatlons of the usual concept lnasmuch as we include
microscales assoclated with (xz), a&s well &s with ¢ and rz. We will
also consider microscales for the case where the slope of the correlation
curve at its origin is not zero. In the latter case a third degree rather
than g second degree curve is inscribed iﬁ the correlation curve at its
origin.

The various correlations will, in general, have different microscales.
For the sake of definiteness, they will here be arbitrarily taken as equal

in most cases and will be designated by A. (The A used here is twice

the usual microscale.) In order to obtain the actual relation between
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the microscales for specific boundary conditions (which we are not spec-
ifying here), it would be necessary to consider higher-order expansions
of the correlation equations. The present analysis, however, should be
adequate for determining whether or not reasonable solutions of the cor-

relation equations exist for steady-state turbulence. Let

*
ugug = (uguglo + (uzvzly €% - . - )
puz = (Pug) * (Puz)p €57 - - .
N —_— — %2 B
Tuy = (tug)o * (Tuk)p £ 0 . . . (26)
* +
— T T, G¥2
T = (TT )o (17 )2 E PO
t t t *
= + - - e
= ()t (@), ¢

~

where the barred quantities in parenthesis are independent of g*. Then
* /

(uBué)o, for instance, is the value of (usué ) for &* = 0, and (usué)2
T 2

1s (1/2)d%uu /38" evalusted at £¥ = 0. The odd powers of &' are

omitted in these expressions because of symmetry. By using a Taylor

*
** iy
series we can write <uz and T'ué in Egs. (22) and (23) as (Fig. 1)

* % *2
—t (—'—T) 3 T I3 + 62 (—‘_T) I3 (2
Tz = (1u5)oo - 5% (loo 7+ vz (Tloo 5« ¢ - 7)
3/m a(xs)m
* 2 *2
'r'u:': = ("_1"11-;)00 + ——a—¥ (—'r.'i%m)()o:—rl---:'?2 + -——é——-—*-_—- (-'r_ug)oo -I-‘E)— o o . (28)
Sl 2 S 5
o _x
where (TUé)OO is the value of TU% at (XS); for ¢ = r; = 0. Sub-

stituting Egs. (26) to (28) in Egs. (21) to (25) and setting the coef-

*0
ficient of ¢ equal to zero in each equation give



1

H

- 14 -

0 7 1 o) =7y (_
——_——B(x:z)); (@O - 5———6(:;5); (PuS)o( 1“;)

2

2 g (5o

9_  —
t&F (pug)

o
ar-x-

(Pu') (-r*)

2

» O ——
N (ugug
3

+ 8(u u ) + (Tué)o + ('rué)o(-rg) (29)
* *2
1 1 rs 82 oy r3
0= (ugug) Pr Pr["us)oo"a( % ( 5)00 ’é‘*a(x )*E (“‘:5)00 'é—]
1_09 (tp") : 1 1 3% ——
T3 o TRE (') +Z 1+§'r'> D(xg) *2 (rug),
m
1 5% —_—
* (1 - 7}?) SCag)¥orE (rug)
+(L+1)_§2_(—T) + @ |+ (7 (30)
Pr ary? Thalg T Mg/l T AT g 0
: N T A
o] (T‘\ls) (-r¥ = {(Tu) 3 = u3OO 3 Y )*2 (Tu3)00—§—
S'm
r3
+ (tug) (&= - Prkrus) S® ( ué)oo -
+ 52 ( ") i-):.;i
a(xs)-)‘.? 3’00 8




- 15 -
1_o° o7 2 =, & — .
1_9° = 0% = : -
S o " TgTeE T * Sy D+ D),
-1 ) - <2 (T
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ey @+ () (") + 4(")
— ; 1 1 +4
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As mentioned previously, in order to obtain definite results we arbi-

trarily assume that the microscales for the correlations are equal to 2.

Thus, in Eqs. (26) let ugui = pug = tugz = 17’ = 1p' = O for
* = E/K = 1. (Note that the actual correlations are not zero at those

points, but only the inscribed parabolas given by Egs. (26).) Then

(usué)z, (Tué)z, (t1")9, (pué)z, and (7tp')s 1in Egs. (29) to (33) are re-
placed respectively by -(usué)c, -(Tué)o, -(TT')O, -(pué)o, and -(Tp‘)o.
(If the microscales are not taken as equal, (usué)z, for instance, would

equal a negative constant times (usué)o.)

Next, let |
(9) ) = (3gud) ) + (uud) | =% + (sgud) , =3° + (ug)) , =%°
(3up) ) = (paf)  + (ud), =5 + (@)  =3° + (7o) , *%°
(tul ) = (taf )OO + (Tu')o1 3+ (Tu ) 0z 3 (Tu‘)o3 ;3 P (34)
(T = (FTTgo + (TT)gy T8 + (T )op 4% + (TT7)gs =2
(N = (g + (T2)y; ™5 + (D7), 52 + (T87) 5 Th°

A
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Substituting Egs. (34) into Egs. (29) to (33) and setting the coefficient

%0 *x1

of rz” and of rz  in each equation equal to zero give (with

(usu‘-,g):2 = -(uguf) o’ etc.) a set of ordinary differential equations in

(XS);. In Egs. (34) we let (usué)o, (pusr)o, etc. equal O for r’:; = +1

to obtain (usué)OZ = ‘(ugué)ooy (usué)os = ‘(usus)Ol, (Pu%)oz = ‘(Pué)ooy

us -({pud ete.
(P 5)03 (P 3)01)

The quantities (u‘-ﬁu‘-%)oO , ete. can be expanded as follows:

Toal = 7 T *2
(u3u3)00 = (uSuS)OOO + (u3u5)002(xs)m

(Pu3) = (BU3) o + (BU5)  (xa) )+ (BUE)  (x5) %% + (Bog) | (x5) "

=T\ (o) (T * (o= 2 (oo 5
(pug) ) = (pug) , + (Pug) | (xg)* +(pug) . (x5)"" +(pug)  (x5)”

(T 00 = (T 000 * (T8 g0 (x50 + (T )05 (3507 + (TB7) g5 (x5 >
o _ (35)
(TP op = (B g0+ (T g1 (x5)* + (B ) ()% + (7)) *"

(Fo0 = (T)ono + (Fa)ogp(*s)y”
() = (D + (WD) (xg)*+ (7)) (xg)*2+ (W) | (xeg)*

(oo = (Fop0 * (FT 00X )

J

The odd powers of * d in th i 7 ]
powers o (xs)m are omitted in the expressions for (u5u3)00’

(Tué)OO’ and ('r'r’)oO in order to mske those one-point correlations sym-
metric about (XS)* = 0. Substituting Egs. (35) into the ordinary differ-
m

ential equations in (XS)* (not shown) and setting the coefficients of

(::3)"*O equal to zero give (with (u.:‘5 3) = —(usué)oo, etc. ).
m
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0=-(pug) , +e(eug) +(zug) - 12(uzul 3 ooo * 2793 o0

010 002

(36)

N,
O=(‘11’9‘13)000{ Pr(mooc;‘ -3 (@7 )001 (20 * ; (“Fi') (Tud) 5oz

+ (1 - ‘1511-") (?u'g)ml - 6(—&1_— + l) (Eg)ooo + ("o
N
°=2(?u—§)ooo [Frz - Pr(?‘zs’-)ooo] +§l}’ [(;F)ooz '12(??)00(3

1 ,— —_— S —
5 (puz) - (puy) - 6(pui) = -(Tu})
2 73002 37011 3% 000 3’010

6(tp"

™ )g00 = 0

1 /= P _
z (Pgoe * (TPT)gy4

I S e & T 1 A Ve - -y e
0= -5 (7511 +2( o0 *3 (l + Pr)(rus)o12 10(Pr+1)(m3)010

SR — —_— 1 ,— —
= (pu +2 ! -10(pud == {Tud + 2( Tud
7 (Pug)y), +2(eud) ) -10(pug) ) (=5 (Fud) ) +2(mad)

1 ,—t — —_— —_—
5 (tp )012 - 2(TP')001 - 1O(TP')010 = 'Z(TT')OOO

(usué) = (TT')OlO =0

010

1

Setting the coefficients of (xs):l equal to zero gives

S i - o (T _ 7

z (Pg)ogy - B(ug)oyp = 8(puglyg) = (T9g) o, = (M3,
% (;57)003 + 2(?§T)012 - 6(;57)001 = (;?T)ooz

3

2

7 (Puzloyz + 4(Pu)ooz - 10(PuZlo1y = (Tud) ez

S (—

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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_ _— — N 3 1\, —
0= Pr(usu:}))ooo(rug)ooz - (tp")o12 + 2(@')go1 *+ 3 (l + -P-r—)(rus')Ols

-4(1 - Flr')(—@)ooz - 10(%; + 1\)(}?1—‘3-)011 (49)
(5553 0p; = (FMgyy = © (50)

To set the microscales associated with (;:5)m equal to A, let (usus 00’
(pué)oo, ete. in Eqs. (35) equal zero when (xs); = *+1/2. (We use

(XS)* = :tl/z instead of *1 as in the other cases, because of the differ-

m
ence between the definition of (xz) and that of rz or E. See
m
Fig. 1. Then (uzug = -4(uzul ! = ~4(puq
g ) ( ] 3)002 ( 3z 3)000: (Pus)ooz (p 3)0003

(pué) -4(pué)001, etc. With these relations, Egqs. (36) to (50) form

003
a determinate set of algebraic equations that can be solved simultaneously.
Equations (40), (48), and (41) show that

(B 00 = (B gy = (W) =0 (51)

From Egs. (42), (45), and (36),
(uzug) = 3 (Tui) - L (Tuid) (52)
33’000 " 32 ' Spoo ~ 128 ' So11

Combining Eqs. (43), (46), and (49) gives

: 1 _Pr

Tug) = - = = (uzu; :

(rug 011 41 .4 (ug 5)ooo(m3)ooo

Pr
1
1 —— (l B —ﬁ'—) —_r (55)
+1§—l—+l(rr )OOO+ T, ( 5)000
Pr Pr

From Eq. (38)

(Te7 _ 1 - Ny s
TT )OOO =3 Pr(TuS)OOO B - Pr(rus)ooo (54)
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Finelly, Egs. (43), (46), (52) to (54) and (37) combine to give

(3 1 Pr -1 1 Pré o 3
0= (35 “ 128 Pr + 1)“ T, pr 1@ tw Irer
Pr +1 1Pr-1_(3 1 Pr- 1) —
"8 THE T Y -IEr Tl Pr(sz 128 Pr + 1 (Tus)oooa
3
1  Pro(Pr - 1) ;— Pr -1 1 (Pr - 1)
85,556 (pr 4+ 1)2 (rug) o * == Y (e (55)
where
N —
® = 5= - Pr(’rus)ooo
and
2
1 Pr —
T=1-53 T (Tus)ooo

Note that the originel (;GE)OOO in the linear terms of Eq. (37) (that
equation having come from Eq. (10), the equation for ?ﬁg) canceled out
of Eq. (55). However, Eq. (55) still yields values for (?EE)OOO’ which
is the wvalue of ?ﬁg for € = rz = (XS)m = 0, because the original equa-

tions were nonlinear in (Tué)ooo.

Positive values of Ni correspond to negative temperature gradients
(heating from below), and turbulent solutions should exist for suffi-
ciently high values of ¥Ni. Equation (55) was solved for Pr = 0.7
(corresponding approximately to gases) and for several values of N, .

As N increases, (?Eg), as well as the other correlations, becomes
positive at N; = 88.1. Thus that value of Ny can be thought of as a
critical N; above which turbulence might occur. For Ni = 100,

(tul) = 26.4, and for = 200, (Tul) = 251. From Egs. (52) to
5”000 ’ N > 300

(54), for N = 100, (usué)ooo = 2.49 and (717)gq, = 287, and for
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N, = 200, (Egﬁg)ooo = 27.3 and (17")ygy = 2,414. Thus the correlations
have the correct signs and the correct trends as K; 1increases above its
critical value. For values of N, Dbelow the critical value, including
negative Ny (positive temperature gradient), the correlations become
negative according to Eqs. (52) to (54), so that those equations do not
yield possible solutions. In that case we should use the other solution
of Egs. (21) to (25), that is, the no-turbulence solution. Note that
above the critical Ny both the turbulent and the nonturbulent solutions
are possible according to the equations; consequently, the fluid is not
necessarily turbulent for all values of Ny above the critical value
considered here.

One other quantity that should be considered is the eddy diffusivity

for heat transfer e, which is defined as

—— e——

TU.S T'lls
€ = - =
R/

k a

(56)

In dimensionless form, at (XS)* = 0,
m

e 5
U
(™95) 500

e =
R N
Pr 3’000

From the preceding computed results, €, 1s positive and increases as
Ny 1increases above its critical value so that the values obtained for
€, &re also reasonable.
It might again be mentioned thet the preceding solutions are for the
case where the microscales are all equal. Thus the results probably do

not correspond numerically to those for particular boundary conditions.
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They are given here to indicate that reasonable solutions for steady-
state turbulence can be obtained from the correlation equations.
Equation (55) is quadratic in (7ug) 000 and even for unequal micro-

scales the solution for (-cusi) is of the form
000

(mé)ooo =a + DN % /\/cNf +eN +f (57)

where a, b, etc. are functions of Prandtl number and the microscale
ratios. (The microscale ratios might in turn be functions of Wi, but
those functions are probably slowly varying.) Setting (?u—g) =0 in
Eq. (57) gives two values for a critical Ny (for given values of a, b,
etec.), but, of course, only one of those would be expected to be physically
realizable.
SUSTAINED SHEAR-FLOW TURBULENCE
Correlation Equations
General two-point correlation equations for incompressible turbulent

shear flow were obtained from the Nevier-Stokes equations in reference 10

as

g— L 8 =1y sgly D T
}-Euiuj ukuj&—k- uiukﬁ (Uk-Uk)'gxiuiuJ '§'(Uk k) '5'(—7—ka u

1 o T 0
+ 35 3-(-@; (uiujul'{ + uiukuj) + E'; (uiujulf: - uiukuj)

.

-- 22 O TiT 4+ o T |+ TP - T

! Bzuiuj . azuiu'
5V 6(Xk)ma(xk7m + 2v ﬂ‘l (58)

x“Tk
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1|1 Bzuip‘ . Bzuip' +Bzuip' 2 BUi 1 Sujuy +Buiul'{
o |2 SIS0, 3o o+ Srory | T 2 3 |2 S0, oy
o o o7 ey 2oy
1 ofugujuy 1 O“ugujuy 1 o%ugujuy ) o“uguuy (59)
4 B(XZ)maxk)m 2 B(Xz):nark 2 B(xk)marl Brlark
o] 4 g(;(k)ma Xk)m - B(Xk)mark Brkark = Bxk 2 a(Xz) - Brl
ST S el 32 - CraaTy
_ ‘:_L. UZUKUJ l uZUKUJ l ulukuj _ ulukUJ (60)

where uy 1is the fluctuating part of an instantaneous velocity component,
U; 1is & mean velocity component, and the other quantities have the same
meanings as in the equations in the preceding sections. As before, the
unprimed quantities are measured at point P and the primed ones at P'.
The vector configuration in Fig. 1 spplies to the present equations. A

one-point equation given in reference 10 is

u; W 1w s [
Uk T T ey Y T T Lk ()

“It is suggested in reference 10 that Egs. (58) to (61), together with
higher-order equations, shouia constitute a solution to the turbulent
shear-flow problem. Further evidence that this is the case is given
herein.

In this analysis it is assumed that the mean velocity is in the x,
direction and that changes in the mean guantities can take place only in

the x, direction; consequently, we have plane shear layers. If the
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turbulence is week enough for triple correlations to be neglected and if
we let i =3 =2 in Eq. (58), that equation becomes

d ——r , d — 1 )1[ 2 d
&'uzuén-(Ul-Ul)giuzuz-E E{}WX—ZT;E{.FBT}?Z-ZPIIZ(—I‘ﬂ

2
d d 1 0 ugug
+ 3;5 (puz)(—r) - 3——-pu2 ts v €2 a(xz) + 2y S, (62)

Similarly, if i =1 &and j =2 in Egs. (58) to (60), we obtain

) 7 90 o1 d 1{1 )  ——r
St = vz - (B - U mTwug - o 2 gl 2P

TS d%uul
+ O TBT - - Tul| + % v e AP (63)

Y arg P T & Pzl Y2 Y ST oG, ST,
I szuz , N 35557 "

o4 B(xz)mb(xz)m B(XZ)mBrz Brkark '55- 55
and

2 T T N

11 3 u.p d2 ulp 8 ulp . BUl Bulu2 (65)

The one-point equation, Eq. (61), can be used to eliminate the mean ve-
locities from these equations. If the turbulence is steady state,
Eq. (61) becomes (for the plane shear layers considered here with no mean

pressure gradient)
d L ——
&; ng——uluz = 0




or

where T

bulent shear stress) and is independent of position.

gradient at point P is

and that at P' is

- i)
At 8 general point P,

- 24 -

ouy
v gj—{g - ulu2 =

gl 2}

aUl=—+}‘uu
0x, pv v L2

aU1=i+i__'__'_

SEé pv Vv b !
n

aUl T -

x5 v 1%z

(66)

is the total shear stress (made up of the laminar and the tur-

Then the velocity

(67)

(e8)

(69)

Integrating BEq. (69) between P and P', that is, from (xz)m - ro/2 to

(xz)m +ro/2 (Fig. 1), gives

(xz)mfrz/z
v T 1 THW g N
U; =Ty = -p—; ro + 7 uqug dxz (70)
(xz)m—rz/z
The substitution of Eqs. (67), (68), and-(70) into Egs. (62) to (65)
gives, for steady-state turbulence,
(xz)m+r2/2 a
T W g -7
O=-levT2z*y U OXp | 5T Uzlz
(XZ)m-‘rz/z
5 2[ w2 PU2 * Sl pug( r)] t, pug(-%) -5 P
2 o
1 8 uzué 6 U.leé (71)

Y2V ) Ok TP Iy
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0 = - upug (5% t3 “1“2) "oy T2ty uup dxp & upuz
(xp) -rp/2
1|1 O ——r 0 ——r 0 —
Yy [E olxz) NPt E; M T &y Puz]
+1y 0 v + 2v 0 upuz (72)
27 3(xp)E SOy

szué szué d%paz

S P2 ( T .1 ) S ——
== - + = 2 —=— + = y-u PRTY (73)
o4 a(xz)fl B(xz)marz arkark ov Ty tiv2 5;.—1' oud

and
3% p' 3% D' 32 "y
S3 == 1 P il 2oy
e 43(X2)§+a(x2)mar2+arkark ) 2(pv+v uluz)Fl b ey (74)

Equations (71) to (74) form & determinate set. A possible solution
for these equations is that all the correlations are zero, as was the
case for the equations for thermal turbulence. In that case no turbulence
exists and the shear stress is produced by molecular action. We are here
mainly interested in turbulent solutions that might be possible because
g of the nonlinear terms in the equations. Of these nonlinear terms the
first term of Eq. (71) and the second term of Eq. (72) have been inter-

pretedlo

as Fourier transforms of transfer terms that transfer energy
between eddies of various sizes. The remsinder of the nonlinear terms,
thet is, the first term on the right side of Eq. (72) and the last terms
in Eqs. (73) and (74), might be interpreted as production terms. Some of

the nonlinear terms here are more complicated than those for thermal tur-

bulence, where they were all simple products of correlations. The equa-
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tlons can be written in dimensionless form by introducing the following

dimensionless variables:

x N ul 2 r. (x2) » Nopu!
i7J VZ 7 7B va” i A 2'm ENE g st

where the microscale A\ 1is again used as a length scale because the

solutions to be obtained are accurate only for small values of the space
variables. The parameter Ng is a determining parameter for the shear-
flow turbulence and has some similarity to the square of a Reynolds num-

ber. Egquations (71) to (74) become, in dimensionless form,

(x5)*4x% /2
* Z'm ™2 WS oon Q0 —* 1 ) —
0 =~ {Ngrs + ujus dxo —_Br* Ugls - 3 3 )* pus
(xz);-r"z"/z 1 m

-%— o ~ DU’ (-T*) - —x pug (-r*)
I R
. l puz'” 1 a Ilzu2 5 U.Zuz (75)
* > > ¥ ¥
ory 3(xz) Ay Ty
(xz)*+r"2"/2 ;
0= -upuy (Ng +wyup™) - | rg+ [ wjwy axp | 5wy
(x5) -rg/z
1, 0 —— —%
ST SGF S
m
 — P
. —a—fﬁﬁ* L1 3 u ul 3 ujug (76)
ory 2 3(x,)*2 oryory



- 27 =
a pu azpu' szu 3
1 2 2 2
- = 2{N, + w.u — U (77)
F o et g e ) s

oo™ eyl Py
= A2 u]_P e = -2 (Ns + _*_"*)

ERPR I ERLES S

-é%? wu, (78)

Series Eipansions

The expansion in power series of the correlation equations for shear
flow is similar to that for thermal turbulence. Most of the discussion
at the beginning of the section "Series Expansions™ for sustained thermal
turbulence therefore applies also to shear-flow turbulence. The main
difference between the two cases is that we had the three lndependent
variables £, rz, and (XS)m for thermal turbulence, whereas for shear
flow we have the four variables ry, rp, rz, and (xz)m. This is because
there is no axial symmetry for shear-flow turbulence as there was for
thermal turbulence. The final expanded correlations will then have four
subscripts instead of three. As before, all of the microscales will at
the beginning, for the sake of definiteness, be assumed equal to A. 1In
the present case, however, it will be found necessary to later modify
that agsumption to obtain reasonable results.

We will first obtain expressions for the nonlinear terms in Egs.
(75) to (78) in terms of the expanded correlations. The quantities

1 Uup and ujus can be expanded in a Taylor series to give, for

r2 5 (—‘r

* Y T2 o
Ujuy = (uluZ)OOO Z S(xp)* uluz)ooo (79)
m
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wv = (U)o * F STea), "1%2) 00 (80)

where (ujul) is the value of uul at the point (xz); with

000
ry =T r O. The quantity (uluz' >OOO’ in turn, can be expanded as

2 1
T : 'T) *x2
= u, + 81
(193) 000 = (1% 0000 * 1% 0002 %2y (81)
where (u.luz) is the value of uluzi for (xz)* = rg = r; = r’{ = 0.

The odd powere of (xz); are omitted to make (u]_uz')O 00 symmetric about
(xz);’;'1 = 0. To relate (ulué)oooz to (ulué)oooo, set the microscale for
(ulué)oooo and (xz)m equal to A by letting (ulué)ooc = 0 for

(xz);; = 1/2. This gives (ujud )oooz = -4(ulué)oooo. Then Egs. (79)

to (81) yield

uluzx = (ulué)OOOOE + 4(}: )* ;] (82)
T = (oo [ - 4] (83)

For a general point x3,

T = () g0 [ - 57 (04)
Then
(xz);-rr"z‘/z
Tf{u-g dxg = (uluz)oooor§ (85)
(x) -r2/2

Let
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uluéx = (ulué)o + (EZEE)Z r;z >

(86)

Py = (pup), + (puz), 3z

Tz

U’ = (1), + (u1p"), rEZJ

where the quantities in parenthesis are independent of rg, and (uzué)

for instance, is the value of uzué for rg = 0. The odd powers of r%¥

are omitted because of symmetry.

0,
3
Substituting Eqs. (82), (83), (85), and

(86) into Egs. (75) to (78) and equating to zero the coefficient of *0

T3
in each equation give
0 = - [N + () 000] ™8 53¢ T2, - 3 SrmyF (BB
s 7 1%200000) T2 & V2720 T 2 3(xp)X Y270
- %g(—fz—); F) (-8 =) - 5-1%2; (Bo]) (s =)
m
o = 1 82 - -
+ e (puz)o t s — 3 (uzuz)o + 2 = (uzuz)o
2 B(xz) Ty
m
5 8 (= —
+ S *2 (uZuZ)o + 4(u2u2)2 (87)

2

1 9

19 wmny oo 7

———

1

d
 —

+ 2

3
Br{z

(ului

¥ __ ==
*2 17°2/¢

1
'z

2 S ———  S—————
D), * 2 65*2 (Toh), + 4(Gl),  (s8)
)of
2




1 3 32 32
1 3(xp)*2 (o) - a(xz)*a et o0 ot sz (B *2 (pug), +2(pug),

- 2y + (1 + 4023 558 g000| 52 * (5D,  (9)

32
1 ( )*2 ( up )0 a( )*a * ( up )0+ar*2 (E ) gz (ulP )
— * %y TT 3 j
+ 2(ap )2--2EW3+(1-4(x2)mr2)(u1u2)ooo(ﬂ 2@, (%0
1

In order to eliminate r§ from the correlation equations, let

(E;Eg)o = (EEEZ) (u2u2)01 r; * (“2 2)02 2 + (Egag)os r*S
(590 = (@)oo + (W9)gy r§+<ﬁ1?5>oz r3? + (am 2)03 r3°
(91)

!) = 1 — T *2 5

(57, = (M7, + (BN, =5 + (G, =5 + (@P), 75

where, for instance, (uzué)oo is the value of ugud for r¥ =r% = 0.

Substituting Egs. (91) into (87) to (90) and equating to zero the coeffi-
cient of rgo give, with (uzué)2 = -(uzué)o, etc., a set of partial dif-

ferential equations with independent varisbles r{ snd (xz);. Setting

the microscales for (uzué)o, (ulué)o, (pué)o, and (ulp’)0 in Egs. (91)

equal to A by letting (uZUé)o’ (ulué)o, etc. = 0 for ré = +1, we
find that (uzué)o2 = —(uzué)oo, (uzué)o3 = -(uzué)01, (ulué)02 = -(ulué)oo,

(ulu2 03 -(E{Eg)Ol, ete.
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To eliminate r*l‘ from the correlation equations, let

Y - 7 - * L ToT
(guz) oo = (uzu2) g0 + (82) 0y £ +(9z83) gop T1 1 *(ugug) g0 T1 3

T - T BSYRTEA * L (Gal *2 ¥*3
(uguz) oy = (Wguz) g0 + (Mtp) gy y T+ (Uguz) gy ¥1° + (Wgug) oy 5 T7

(uluzf)oo - (ulué)ooo + (uluzi )001 r':f_ + (ulug)ooz r"{z + (uluz' )003 1{5

. . . . (92)

- - Y .

Substituting Eqs. (92) into the correlation equations with independent
variables r{ and (xz);’;1 (not shown) and equating to zero the coeffi-

*0

cients of ry~ and r“il give (W:L'l:h'l'uzué)(,)2 = —(uzué)oo, etc.) a set of

ordinary differential equations in (xp );.

Finally, to eliminate (xz);, let




- 37 -

0110 0000 00TO TOOO 2010
(96) GaPn) % Guln) + o]z = O (Gngjor - PGnayz + PO (%na) 2
0000 2000 0100
(s6) (fnfmyer - * (fnn) + " (fnd)
00TO TOOO 0000 0000
() - (a2 - ﬁ fnln) + m@ (fnfn)- = 0
598 «Hooﬁmsmsv- - nooﬁmzmsv aoooﬁmsmé- - mooﬁmsmé
W
U3t ‘saAll oasz 03 Tenbs *Amxv JO S3ULTOTIFS00 aY3 BUuT}eg °*IJ8Y USATS aq TTTMA
OOOOAN_ 5NSV pus OOOOAN_ s.ndv Futureiqo J0F peafnbax gssuo syqg ALTUo 283Y3 JO -suorgwenbs ofwIq

Uz
~38T® 2¢ JO 398 B §9ATE L (°X) uT suolyenbs TBIJUaISIITP ATWUTDPIO SUF OJUT (g6) °sbFg Jo uoryng
w

-T38qng ‘O = *Amxv - Mn - WM - mn 18 WSNS JO snTBA 3Y3 ST ooooﬁmsmﬁv fa0uB38UT JOF ‘aIayum
an

¢TTO w 21TO o TTTO 0110 TTO
n*Ava A.QHSV + N*ANNV Akmmmv + *Amxv Akmmmv + Akmmwv = A_mﬁsv

(g6) A

Eﬁm €100,z 7 w 2100

1100,z 2 0100,z 2 TOO 2,2n

(%) %1 %n?n) 4 (%) TP (%any 4 OTO0(ZnZn) o T00(2yly,

m £000 u 2000 u TO0O 0000 000
()= (Fnln) + 5u(32)*0(F02n) + (%) OO (Fn2n) + O%00(FnZn) = 0% ()
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IV e

(52 102 = B8P oggy = 20(u327)g00

R T (e S

1l i —r b o -
= - u, - 10
2 (P2)oz ~ P2)oyyy - 200
- po ; e 3
4@‘5 * (%92) 5000] (2720000 (8)
1 7 g 2 _ -
7 (1P oop + (127550 - 10(mRT)

= 4[1‘79, * (“'_Lué)oooo] (532)o000 (99

0 = 2% + (G50 o000 o000 = TBorns -~ T oo

prmpan o - T
+ (uzu2 ) 0112 28 (uzu2 0110 (100)

- 0=-(uzu3) 0110 E‘Ts +(‘11“2)0000] +2@5+ (578 0000| "1 0000 =3 (F1P o111

+ T - 2(pul + ] - 28(wk 101
2(w2") 10 = B(PUE) g 00 * (B1U2) 1, - 28(Wpuf) 0110 (101)
Equating the coefficients of (xz);l to zero gives
2@ -2 - e(mul)
2 270003 2’0102 20001
2N, + (u.us ! 102
= [5 (2192) 0000] (%2%2) 0011 (102)
S (= - —
= + 2 ' -8
z (WP o0 * 2wy op - G0 PT)
- -2l + (T go00| @ Hogry  (109)

0= - EWS + (ulué)oooé) (uzué)ool:L + :‘5(uzué)m_o:5 - 20(u2ué)0101 (104)
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= '(u2u2)0101[ (uluZ)oooo] = 4(3292) 5000 (U1 5000

lé‘ + (ap ooocﬂ (qu_;)oon B (-61?)0102 * 2(—“'1’7)0001

* (P—uzt)oin + 3(upug) 0103 ~ zo(ulué)oml (105)
0 = 3(uzu3) o515 - 20(ugud) oo (106)
0=-(uz12) 5011 Eqs ¥ (ulué)oooé] = (92 ) o012 = (912 o194 = 2(B83) 5oy
+ S(ulué)om - 20(u é) (107)
53—t —_
z (PUp)gyy s+ 4(P92) oy = 24P 0, = 4[NE"‘(uluZ) oc;‘( 2%2)0101
- 16(ulué)oooo(u2ué)oooO (108)
3 7 — —
z (WP g1 - 4(upT)ggp - 14(wp ) gy

- P+ D ] (T - T, (108
Equations (106) and (104) give

1 pomens _
(uzuz 0011 (u2u2)0101 =0 (110)

1 .
since (uzu%>0015 and (uzuz)Olo3 are proportional respectively to
ey & o
(uguz)ooyy and (upud)ey e -
Equation (94) emphasizes the importance of the pressure-velocity

correlations for shear-flow turbulence. In the absence of those correla-

. —— —
tions (uzuz)oooo would be zero (since (u is proportional to

2%) 0002
-(uzué)oooo) and there would be no turbulence. This is not surprising,
since the turbulent energy is fed into the turbulent field through the

ului component and is distributed between the various components of the

energy by the pressure-velocity correlation terms.
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As in the case of thermal turbulence, it is the presence of the non-
linear or quadratic terms in some of Egs. (94) to (109) that makes possible
8 nonzero solution of those equations. In the absence of those terms the
equations would be lineasr snd homogeneous and, in genersl, would have only
a no-turbulence solution.

To relate (uzué) to (uzué)oooo, etc. let the microscales asso-

0002
ciated with (xz); in Egs. (93) be equal to A by letting, for instance,

— - % _ 11/2. A — AT
(uzu2 000 0 for (xz)m 1/2. This gives (uzuz)0002 4(u2u2 0000’

Ppeng o Al 1T by o = ~4(Jeul .
(u2u2)ooos = 4(u2u2)0001, (u2u2)0012 4(u2u2)0010, etc. Using these
relations we get, when substituting Eqs. (96), (98), (100), (102), (108),

and (110) into (94),

-7168(u,u} = (u, ul N, + ! EN + g 111
(1292 0000 = (%242 o000 M= * (W12 oooé} s+ (992) 5000 (111)
Note that (uzué)oooo cancels out of this equation leaving a quadratic

equation in (ujuj) Thus we get the somewhat unexpected result that

0000"
Eq. (94), which was originally obtained from Eq. (62) (the equation for
uzué), gives, when combined with the other equations, a solution for

(ulué)Oooo rather than for (ujul) Similarly, Eq. (95) will give a

0000°
solution for {(u.ul rather than for u} . Solution of
(uzu2) 000 (2192) 6000
Eq. (111) gives
—_— o T
(050) o0 = ~2Ms N - 7168 (112)

This equation can give a negative value of ulué for positive Ng and

a positive ulué for negative N, as it should. However, the critical

—r s .
N, (the value of Ny for (uluz)OOOO = 0) is imaginsry. Moreover, if we

calculate the eddy diffusivity for momentum transfer from
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ujug Ujup

pv T M1Y2

which in dimensionless form at (xz)* becomes
m

(2192 5000

< — (113)
N + (uluz)OOOO

€ =

we find that Eq. (112) will not give a positive solution for e as re-
quired. This only indicates that all the microscales cannot be equal as

assumed. If, for instance, we taske the microscale for (pué)OlO

. — o _1R(=T
Egqs. (93) as A/2 instead of A, we get (Pu2)01oz le(pu2)01oO and
(pu,é)Olo3 = -16(pué)0101. If the other microscales are taken equal to A,

T 2 + 17,02
(uluz)oooo = -2Ng + /RS + 17,024 (114)

where the positive sign is taken for positive Ny and the negative one
for negative Ng. Equation (114) gives a critical value of Ng (at which
(ulué) = 0) of #75.3. Also, substitution of Eq. (114) imto (113) gives

a positive eddy diffusivity, which has the correct trends with increasing

Ng. Physically realizable results for (ulué)OOOO and e were also
. = al) =
obtained by letting the microscales for (puz)o, (Puz 00’ and (Puz)OOO in

Egs. (91), (92), and (93) be equal to 4A, the other microscales being set
equal to A as before.

To obtain (uzué) as a function of Ng, we solve Egs. (103) to

0000
(110) and Eq. (114) simultaneously. The values for microscales used for

obtaining Eq. (114) were used here. For (uzuz)OOOO = 0, Ng = +75.3, as

was obtained for (ujuj) = 0 in Eq. (114). For N, = 100,

0000
(uzué)oooo = 93, and for Ng = *150, (uzué)oooo = 197. Thus (uzué)oooo,
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as well as (ﬁ;ﬁ%}oooo and e, has the correct trends and signs. Note
that possible solutions are obtained for either positive or negative Ng,
whereas for the case of thermal turbulence solutions were obtained only
for positive Ni. This is to be expected, since the turbulence should not
be affected by the sign of the shear stress. For thermal turbulence, on
the other hand, the turbulence should exist only for heat transfer in the
positive direction (negative temperature gradients).

As in the case of thermal turbulence, the results obtained in the
preceding paragraphs probebly do not correspond numerically to those for
particular boundary conditions because the microscale ratios would be
different. They are given to show that reasonable results can be ob-

tained from the correlation equations. In the general case, Eq. (111)

can be written as
- ey o femguens o
A ENS + (uluz)oooo:) E.Ns + (uluz)OOOO] (115)
wvhere A and a are functions of the microscale ratios (which might in

turn be wesk functions of Ng). Solving Eq. (115) for (ulué) we

0000
get

ot (1ra) Ng ¢ {1-3) «/ﬁg + A (116)

L = -
(192) 0000 Z 2 (1 - a)2
7 = = 1A/
For (uluz)oooo 0, Ng = tA/A/a. Thus A and &a should both be either

positive or negative, at least in the vicinity of (ulué) 0. Com-

0000
parison of Eq. (116) to (57) shows that the expressions for both shear-
flow and thermal turbulence are solutions of quadratic equations, although

the forms differ somewhst.



CONCLUDING REMARKS

By expanding the two-point nonlinear correlation equations in power
series, reasonable solutions were obtained for both thermsl and shear-
flow turbulence. By ressonable it is meant that the correlstions and
eddy diffusivities had the correct signs and trends. Moreover, critical
velues of the determining parameters, below which unphysical turbulent
solutions occurred, were obtained. Below the critical wvslues the no-
turbulence solution of the correlation equations was therefore appro-
priate. Above the critical values the equations showed that the fluid
could be either turbulent or nonturbulent. For shear-flow turbulence the
same solutions are obtained for either positive or negmtive shear stress,
whereas for thermal turbulence it was necessary for the heat transfer to
be positive (negative temperature gradient). These results are, of course,
to be expected if the equations yield reasonable solutions. The results
obtained would not be expected to correspond numerically to those for
particular boundary conditions inasmuch as the microscale ratios corre-
sponding to those conditions were not determined. To determine those it
would be necessary to carry higher order terms in the expansions and apply
the particular boundary conditions of interest. The presence of pressure-
velocity correlations in the equations was found to be indispensible if
steady-state shear-flow turbulence is to exist. The pressure-velocity

correlations were of less importance for thermsal turbulence.
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The action in sustained turbulence is somewhat similar to that of a

clock, a violin bow, or an electronic oscillastor in that in each of

these a steady flow of energy is converted into oscillating energy
by & nonlinear mechanism. Turbulence differs from the others, of
course, in that its motion is random and has an infinite number of

degrees of freedom.
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Figure 1. - Vector configuration for two-point
correlation equations.
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